

Soil components

Agriculture and soil C change

 \triangle SOC = input - output

Biomass ethanol goals

Biomass ethanol goals

- Sustainably produce ONE BILLION TONS* of feedstock annually
 - Yield increase 50% by 2030
 - ◆ Corn and small grains
 - Residue/grain ratio for soybean increase from 1.5:1 to 2.0:1
 - Machine to recover 75% stover
 - No tillage adopted universally

(*0.91 billion Mg)

What is a ONE BILLION?

- Agricultural land (cropland plus hay and pasture land)
 - 5 ton ac⁻¹
 - 200 x 10⁶ acres
 - ◆ 56% of North Central Region agricultural land
 - ◆ Iowa, Illinois, Nebraska,
 Minnesota, Indiana, and
 South Dakota (Total = 195.5 x 10⁶ ac)
 - Six leading corn producing states in US

Expectations for agriculture

 Provide traditional outputs for an <u>increasing</u> world population

- Food
- Feed
- Fiber
- Environmental services
 - Control erosion
 - Sequester C
 - Habitat
 - Water quality
- Replenish SOC/plant nutrients
- Renewable energy feedstock
 - 998 million tons (428 million ton from crop residues)

Meeting expectations sustainably

 \triangle SOC = input - output

Meeting expectations sustainably

 \triangle SOC = input - output

Meeting expectations sustainably

△ SOC = input - output

Factors limiting crop biomass removal

Biomass allocation

Increase total biomass production

Increased efficiency... Increased pool of reduced C

- Agronomy
 - Continuous green cover
 - Optimize planting patterns, cultivars, and cultural practices
- Soil science
 - Improve water and nutrient use efficiencies
 - Precision input application
- Crop breeding
 - Improve quality
 - Enhance stress tolerance
- Physiology/morphology
 - Canopy structure
 - Root structure and function
- Biochemistry
 - Modify metabolic pathways
 - Eliminated inefficiency (photorespiration)
- Genetic engineering
 - Convert C₃ species to C₄
 - Use green light
 - Use all energy in photons

ARS-Renewable Energy Assessment Project (REAP)

- Management practices
- Algorithm to guide sustainable harvest
- Decision support tools
 - How much residue must be retained?
 - Quantify benefits
 associated with retaining
 crop residues

